

Recrutement 2026 :

Etablissement : INSA de ROUEN	Localisation : Saint Etienne du Rouvray	
Identification du poste	Nature : Professor Section CNU : 27/61 Numéro : 0121	Département : ITI Laboratoire : LITIS
Etat du poste	<input checked="" type="checkbox"/> V : vacant <input type="checkbox"/> S : susceptible d'être vacant <input type="checkbox"/> C : création de poste	Date de la vacance : 01/09/2026

INSA Rouen Normandie is a public scientific, cultural, and professional institution (EPSCP) under the authority of the Ministry of Higher Education and Scientific Research. INSA Rouen Normandie's missions are: initial and continuing education for engineers, research excellence, and the dissemination of scientific culture. The five-year engineering program is divided into two initial years in the Engineering Sciences and Technologies (STPI) department and three years in a specialized department.

The Computer Science and Information Technology department is an internal structure within INSA whose mission is to provide training for students (ITI specialization) and apprentices (TIIA specialization) in general engineering in the field of computer science and artificial intelligence.

LITIS is a research laboratory recognized by the Ministry of Higher Education, Research, and Innovation, under the supervision of INSA, whose mission is the creation, dissemination, and transfer of knowledge.

As the position open for competition is located in a restricted area, in accordance with Article R413-5-1 of the Penal Code, the successful candidate will be required to complete an application form to gain access to this area.

Translated with DeepL.com (free version) **Intitulé court du profil (en anglais) :**
Artificial Intelligence for Science, Machine Learning for heterogeneous signals, Decision and interaction models.

Mots clefs pour publication sur GALAXIE (en anglais) : Artificial Intelligence, Machine Learning, Human-Machine Interaction, Decision processes

TEACHING PROFILE:

The position is affiliated with the Department of Computer Science and Information Technology (ITI). The recruited professor will be expected to teach in at least one of the department's three thematic areas: information engineering, data science, and intelligent perception. He/she will also be involved in teaching during the first two years of the undergraduate cycle (STPI) and in the apprenticeship track (TIIA). In addition to lectures, the professor will supervise projects, apprentices, and internships. Particular attention will be given to the pedagogical innovations they may bring, especially in the context of implementing a competency-based approach.

Furthermore, the recruited professor will be expected to become actively involved and take on responsibilities in the creation and development of the apprenticeship track in Applied Artificial Intelligence for Mobility and Health (TIIA).

Contacts :

Géraldine Del Mondo (Directrice du département ITI) – Email : geraldine.del_mondo@insa-rouen.fr – Tel : 02 32 95 97 90

RESEARCH PROFILE:

Scientific context and research strategy

For the upcoming five-year period, LITIS is proposing a restructuring of its scientific activities around major scientific competence hubs (3 hubs bringing together the 6 current LITIS teams). Steering this restructuring requires relying on new scientific leaders to take responsibility for setting up the new research teams. Depending on the profile of the recruited candidate, they will join either the “Machine learning/Representation/Vision” hub or the “Interaction, Decision” hub, and will be involved in the coordination, governance, and scientific leadership of this new structure.

The “Machine learning/Representation/Vision” (ARV) hub currently brings together the “Intelligent Transport Systems” (STI) and “Machine learning” (APP) teams. The themes covered by this hub focus on machine learning and computer-based perception systems. Research developed within this hub includes advanced machine learning methods, particularly Deep Learning, adopting an approach that balances fundamental aspects, tool development, and applications. Thanks to the diversity of its research themes, the ARV hub lies at the heart of AI development for applications in computer science applied to physics, chemistry, intelligent transport systems, social sciences and humanities, and health. It also contributes significantly to the laboratory’s priority application domain of intelligent mobility, with a focus on perception systems, data fusion, and localization for driver assistance systems (ADAS) and autonomous navigation.

The “Interaction, Decision” (ID) hub currently brings together the “Multi-agent, Interaction, Decision” team and the “Interaction Networks and Collective Intelligence” (RI2C) team. The themes covered by this hub address automated decision-making systems and human–machine interaction in large-scale distributed systems. Research conducted within this hub includes decision-making algorithms, formal or probabilistic approaches, multi-agent reinforcement learning, multimodal agent–human interaction, and semantic knowledge representation. The proposed contributions are mainly oriented toward decentralized interactive systems, enabling applications in numerous networked environments, whether virtual (such as the web or social networks) or physical (such as networks of connected objects).

The recruited professor will join one of these two hubs, with the mission of contributing to its structuring by leading the creation of a research team aligned with the laboratory’s strategic theme described below for each hub.

Within the ARV hub, the expected profile focuses on theoretical and methodological models for machine learning applied to signals of various types (images, videos, structured data, sequences, etc.), enabling the development of Artificial Intelligence for Science. Artificial intelligence, particularly through statistical learning, provides powerful tools for a wide range of disciplines such as medicine, biology, chemistry, and physics. Its main strength lies in its ability to model complex phenomena, which are often difficult to characterize or costly to simulate using traditional approaches. At the intersection of statistical learning, mathematics, and physics, a new wave of innovation is emerging: AI models that combine the expressive power of neural networks with the clarity of physical modeling. In the field of chemistry, AI is also undergoing a major transformation thanks to geometric deep learning, an approach specifically designed to exploit structured data such as graphs.

Within the ID hub, the expected profile focuses on decision-oriented Artificial Intelligence models for interactive embedded systems. The required expertise includes reinforcement learning, multi-agent planning (formal or based on Markov decision processes), and decision-making in uncertain and constrained environments, in connection with the specificities of embedded or robotic systems (real-time constraints, limited resources, human–machine interaction). Integrating AI algorithms into intelligent devices (collective or interactive robotics, Internet of Things, autonomous vehicles, adaptive interfaces) requires the development of efficient theoretical models that meet real-time execution constraints, computational and memory cost limitations, and restricted access to training data. Very recent developments in reinforcement learning (multi-agent, meta-RL, deep RL) follow this trend in order to broaden the range of possible applications.

Contacts :

Laurent Vercouter (co-directeur du LITIS) – Email : laurent.vercouter@insa-rouen.fr – Tel : 02 32 95 99 86